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On Data Structures and AsymmetricCommunication Complexity(extended abstract)Peter Bro Miltersen � Noam Nisan y Shmuel Safra zAvi Wigderson xAbstractIn this paper we consider two party communication complexity whenthe input sizes of the two players di�er signi�cantly, the \asymmetric"case. Most of previous work on communication complexity only considersthe total number of bits sent, but we study tradeo�s between the numberof bits the �rst player sends and the number of bits the second sends.These types of questions are closely related to the complexity of staticdata structure problems in the cell probe model.We derive two generally applicable methods of proving lower bounds,and obtain several applications. These applications include new lowerbounds for data structures in the cell probe model. Of particular interestis our \round elimination" lemma, which is interesting also for the usualsymmetric communication case. This lemma generalizes and abstracts ina very clean form the \round reduction" techniques used in many previouslower bound proofs.
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1 IntroductionIn Yao's model of two-party communication [Yao79], the complexity of a pro-tocol is the total number of bits communicated between the two players. Anadditional complexity measure sometimes considered is the number of roundsof messages. In most applications of communication complexity, it is su�cientto consider these two measures.An exception is asymmetric communication problems where the input ofone player (Alice) contains much fewer bits than the input of the other player(Bob). A simple example is the membership problem MEMN;l, where Alice getsx 2 U = f0; . . . ; N � 1g, Bob gets S � U of size at most l, and the two playersmust decide if x 2 S. It is easy to verify that the communication complexity ofthe problem is dlogNe, and the trivial one round protocol, where Alice sendsher entire input to Bob, is optimal.However, this does not tell us all there is to know about the game. What ifAlice does not send her entire input, but only, say, plogN bits? Will Bob haveto send his entire input, or will fewer bits do? In general, what is the necessarytradeo� between the number of bits Alice sends Bob and the number of bitsthat Bob sends Alice? Standard lower bound techniques such as the ranktechnique [MS82] and the \large monochrome submatrix technique" [Yao83]fail to answer these questions. Some tradeo�s for speci�c functions have beenobtained [Mil94, Mil95], but no generally applicable method for showing themhas previously appeared.1.1 Asymmetric Communication and Data StructuresOne motivation for studying asymmetric communication complexity is its ap-plication to data structures in the cell probe model. The cell probe model,formulated by Yao [Yao81], is a model for the complexity of static data struc-ture problems. In a static data structure problem, we are given a domain D ofpossible data, a domain Q of possible queries, and a map f on Q � D, wheref(q; d) is the answer to query q about data d. A solution with parameters s, band t, is a method of storing any d 2 D as a data structure �(d) in the memoryof a random access machine, using s memory cells, each containing b bits, sothat any query in Q can be answered by accessing at most t memory cells. Weare interested in tradeo�s between s, the size of the data structure, and t, thequery time (the value of b being regarded as a parameter of the model, usuallyO(log jQj) or O(polylog jQj)).A familiar example is the (existential) two dimensional orthogonal rangequery problem, where D is the set of subsets S � f1; . . . ; Ng� f1; . . . ; Ng of acertain size, Q is the set of rectangles [x; y]� [z; u], and f([x; y]� [z; u]; S) = 1if and only if [x; y]� [z; u]\ S 6= ;.It was observed in [Mil94] that lower bounds for cell probe complexity canbe derived using communication complexity: For a static data structure prob-lem, we consider the communication problem, where Alice gets q 2 Q, Bobgets d 2 D, and they must determine f(q; d). If there is solution to the datastructure problem with parameters s, b and t, then there is a protocol for1
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the communication problem, with 2t rounds of communication, where Alicesends log s bits in each of her messages and Bob sends b bits in each of hismessages. For natural data structure problems jqj = log jQj is much smallerthan jdj = log jDj, so the communication problem is asymmetric. Earlier lowerbounds for static data structures in the cell probe model [Ajt88, Xia92] also �tinto the communication complexity framework.In section 2 we continue studying the relations between complexity in thecell probe model and asymmetric communication complexity. We show that:� When the number of rounds of communication is constant, the communi-cation complexity also provides upper bounds for cell probe complexity.However, by a result in [Mil93], when the number of rounds of communicationis not constant, for almost all data structure problems (with natural choicesof parameters) the cell probe complexity is signi�cantly (as much as exponen-tially) larger than the communication complexity. This may suggest that theasymmetric communication complexity approach is not the best one for prov-ing lower bounds in the cell probe model. However, our next result shows thatobtaining better lower bounds, using any method, may be very di�cult. Thebest bounds that can be obtained (and we do obtain) using communicationcomplexity are t = 
(n= log s), where n = log jQj, and we show that muchbetter lower bounds imply time-space tradeo�s for branching programs, a longstanding open problem (see e.g. [Weg87], pp. 423).� If a function f : f0; 1gn�f0; 1gm ! f0; 1g can be computed by polynomialsize, read O(1) times branching programs, then there is a data structurestoring d 2 f0; 1gm using s = mO(1) cells of size b each so that any queryq 2 f0; 1gn can be answered in t = O(n= log b) queries.We go on to provide two generally applicable techniques for showing neces-sary tradeo�s between the number of bits that Alice sends, the number of bitsthat Bob sends, and the number of rounds of communication. We apply themto a variety of problems, some of them motivated by cell probe complexity,others by their intrinsic interest.Some notation: Let f : A�B ! f0; 1g be a communication problem.An [a; b]-protocol for f is a protocol where the total number of bits thatAlice sends Bob is at most a and the total number of bits that Bob sends Aliceis at most b.A [t; a; b]A-protocol for f is a protocol where each of Alice's messages con-tains at most a bits and each of Bob's messages contains at most b bits andat most t messages are sent, with Alice sending the �rst message. A [t; a; b]B-protocol is de�ned similarly.A randomized protocol for f is a public coin protocol P where for everyx; y, Pr(P (x; y) = f(x; y)) � 2=3: It has one-sided error if f(x; y) = 0 )Pr(P (x; y) = 0) = 1:1.2 The Richness TechniqueOur �rst general technique, presented in section 3, is the use of the followingrichness lemma. Identify f with its communication matrix M with Ma;b =2
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f(a; b), i.e. index the rows by Alice's possible inputs, and the columns by Bob'spossible inputs. We say that a matrix (and a problem) is (u; v)-rich if at leastv columns contains at least u 1-entries.Richness Lemma: Let f be a (u; v)-rich problem. If f has a randomizedone-sided error [a; b]-protocol, then f contains a submatrix of dimensions atleast u=2a+2 � v=2a+b+2 containing only 1-entries.The lemma is easy to prove and simple to use, and it enables us to givegood lower bounds for several problems.� In the disjointness problem, Alice gets T � f0; . . . ; n� 1g of size k, Bobgets S � f0; . . . ; n� 1g of size l, and they must decide if T \ S = ;. (Thesymmetric version of this problem is, of course, well studied.) We provethat in any randomized one-sided error [a; b] protocol either a = 
(k) orb = 
(l). Furthermore, if k < a < k log l, then b � l=2O(a=k)� a. We alsoprovide non-trivial upper bounds.� The membership problem is the interesting special case where k = 1. Inthis case our tradeo�s are particularly tight.� In the span problem, Alice gets an n-dimensional vector x 2 Z2n, and Bobgets a subspace Y � Z2n (represented, e.g., by a basis of k � n vectors).They must decide whether x 2 Y . We show that essentially no non-trivialprotocol exists: in any randomized one-sided error [a; b] protocol eithera = 
(n) or b = 
(n2).These communication complexity lower bounds have as direct corollaries lowerbounds in the cell probe model regarding data structures maintaining subsetsof of f1:::ng, or subspaces of Z2n, respectively.1.3 The Round Elimination LemmaOur second technique, presented in section 4, is a round-by-round \restriction"of the protocol. These types of techniques lie at the heart of all previouslyknown lower bounds for static data structures [Ajt88, Xia92, Mil94, BF94],and several other lower bounds in communication complexity [KW90, DGS84,HR88, NW93]. In each case they have been used in an ad-hoc way. We obtaina very general lemma abstracting these types of techniques.Given f , we de�ne a new communication problem as follows: Alice gets mstrings x1; :::; xm and Bob gets a string y and an integer 1 � i � m. Theiraim is to compute f(xi; y). Suppose a protocol for this new problem is given,where Alice goes �rst, sending Bob a bits, where a is much smaller than m.Intuitively, it would seem that since Alice does not know i, the �rst round ofcommunication can not be productive. We justify this intuition. Moreover, weshow that this is true even if Bob also gets copies of x1; :::; xi�1, a case whichis needed in some applications. Denote this problem by Pm(f).Round Elimination Lemma: Suppose there is a randomized [t; a; b]A-protocol for solving P100a(f). Then there is a randomized [t � 1; 120a; 120b]B-protocol for solving f . 3
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This lemma can be applied to a wide range of problems with the followingkind of \self reducibility": Pm(f) (with given parameters) can be reduced to asingle problem f (naturally with larger parameters). In these cases we can usethe lemma repeatedly, each time shaving o� another round of communication.� Our �rst application is to obtain the �rst lower bounds for data struc-tures for the existential two-dimensional orthogonal range query problemdescribed above1. The lower bound applies also to higher dimensions, butfor the one-dimensional problem we prove a constant upper bound. Thisanswers questions raised in [Mil94].We then demonstrate the power of the lemma by easily deriving (sometimeswith somewhat weaker bounds) several of the known lower bounds both fordata structure problems and for other communication complexity problems.These include:� Lower bounds for data structures for counting and modulo-counting ver-sions of the 1 dimensional range query problem in the cell probe model.Such bounds were �rst proved in [Ajt88, Xia92, Mil94, BF94].� The depth hierarchy for monotone constant depth circuits. This was �rstproved by [KPPY84] and, using Karchmer-Wigderson games [KW90], isequivalent to a rounds problem in communication complexity (see [NW93]),which we prove a lower bound for.� A round-communication tradeo� for the randomized complexity of the\greater than" problem. (Alice and Bob each get an n-bit integer and theymust decide which is greater.) This was �rst proved by Yao (unpublished).2 Communication Complexity vs. Cell Probe Com-plexityCommunication complexity is the only known generally applicable method forshowing lower bounds on the cell probe complexity of static data structureproblems. In this section we discuss how powerful it is, and the likelihood ofmore powerful methods.Let a data structure problem f on domains Q = f0; 1gn and D = f0; 1gmbe given. How large tradeo�s between structure size s and query time t can beshown?In [Mil94] it was shown that the following communication complexity prob-lem provides lower bounds for the query time. Alice gets q 2 Q, Bob getsd 2 D, and they must determine f(q; d).Lemma 1 [Mil94] If there is solution to the data structure problem with param-eters s, b and t, then there is a [2t; dlog se; b]A-protocol for the communicationproblem.1After �rst obtaining a lower bound using the round elimination lemma, we have discoveredan alternative proof involving a simple reduction to \parity range query problems". Thissecond proof also yields better lower bounds relying on the ones of [BF94].4
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We can provide a converse in the restricted case where the communicationcomplexity protocol has a constant number of rounds.Lemma 2 If there is a [O(1); a; b] protocol for computing f(q; d) then the datastructure problem has a solution with parameters s = 2O(a), t = O(1), and b.Proof: (sketch) There will be a cell for any possible transmission by Alice.That cell will hold Bob's answer. 2A more general converse is, however, impossible. Using communication com-plexity, we can at most show an n= logm lower bound, since in this number ofrounds, Alice can send her entire query to Bob. However, there are well knowndata structure problem, where the best known upper bound on the query timeis much larger than n = log jQj. A notoriously di�cult example is the partialmatch query problem where we must store a subset S � f0; 1gn, so that for anyq 2 f0; 1gn, the query \9z 2 S8i : qi � zi?" can be answered. No solutionis known with worst case query time even polynomial in n when the struturesize is polynomial. Yet not only does communication complexity fail to providebounds better than n= logm, but for this problem, we only know how to showa plog n lower bound, using the techniques of section 4. Counting argumentsshow that for most data structure problems the solution which stores the non-redundant representation of the data and the query algorithm which reads allof it, is in fact optimal:Theorem 3 [Mil93] For a random data structure problem f : Q�D ! f0; 1g,if s < log jQj=2b cells of size b are used then query time 
(log jDj=b) is neces-sary.Thus, for a random function there is a huge (as much as exponential) gap be-tween cell probe complexity and communication complexity. We don't knowany explicitly de�ned function with a provable gap. Finding one is an interest-ing open problem. The following theorem tells us that we are unlikely to getsuperlinear (in n) lower bounds for explicitly de�ned functions with the currentstate of the art of complexity theory. Recall that it is still an open problem(believed to be di�cult) whether all of NP can be computed by polynomial size,read twice branching programs (see e.g. [Weg87], pp. 423).Theorem 4 If a function f : f0; 1gn � f0; 1gm ! f0; 1g can be computedby polynomial size, read O(1) times branching programs, then there is a datastructure storing d 2 f0; 1gm using s = mO(1) cells of size b so that any querycan be answered in time t = O(n= log b).Proof: Let us �rst show a data structure with a O(n) upper bound on thequery time, and thereafter show how to improve it to n= log b.Given a branching program for f of size (n +m)O(1) = mO(1), and a datastructure instance d 2 f0; 1gm, eliminate all di-variables in the branching pro-gram, leaving only qi-variables. The size has not increased. We store a pointerstructure representing this new branching program.5
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Given a query q, we simulate the stored branching program on q. Since thebranching program reads each variable only a constant number of times, thequery time is O(n).We now present the improved version. Note that since the branching pro-gram has size mc we only need c logm bits to represent pointers in the program.Thus, we can in a single cell represent a binary tree of depth r � log b=2 withpointers to branching program locations in the nodes and indices of qi-variableson the edges. For each branching program location, we make such a cell, rep-resenting the program for the next r steps. This speeds up simulation of theprogram with a factor r. 23 The Richness Technique3.1 The Richness LemmaGiven a communication problem f : A � B ! f0; 1g, we identify f with itscommunication matrix M with Ma;b = f(a; b), i.e. we index the rows by Alice'spossible inputs, and the columns by Bob's possible inputs. We say that a matrix(and a problem) is (u; v)-rich if at least v columns contain at least u 1-entries.Lemma 5 Let f be a (u; v)-rich problem. If f has a randomized one-sidederror [a; b]-protocol, then f contains a submatrix of dimensions at least u=2a+2�v=2a+b+2 containing only 1-entries.The proof is postponed to the appendix.3.2 The membership problemIn the membership problem MEMn;l, Alice gets x 2 f0; 1; . . . ; n� 1g, Bob getsS � f0; 1; . . . ; n� 1g of size at most l, and they must decide if x 2 S. Assumefor convenience that n and l are powers of two, and that l � n=2. Beingasymmetric, this problem has not been studied previously. Let us �rst look atsome upper bounds. Between the extreme behaviors of the [1; l logn]-protocol,where Bob sends his entire input to Alice, and the [logn; 1]-protocol where Alicesends his entire input to Bob, we have the following protocols.Theorem 6 The non-membership problem has the following protocols:1. For a � log l, a [2a;O(l log n=2a)]-protocol, and for a � log l, a[2a;O(logn + 2 log l� 2a)]-protocol.2. For all a � log l, a randomized one sided error [O(a); O(l=2a)]-protocol.Proof: Deterministic Protocol: First consider a � log l. Before the protocolstarts, the two players agree on a prime p between n and 2n� 1. Consider thefamily of hashfunctionshk(x) = (kx mod p) mod 22a�1:6
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Bob chooses k so that the number of collisions of hk on S is minimized. Asshown in [FKS84], he can choose one so that the total number of collisions isat most O(l2=22a). He sends it to Alice, who hashes her input and sends theresult to Bob, who sends Alice all those elements 2 S with the same hash value.Note that if r elements have the same hash value, then the number of collisionsis greater than (r2), so he sends at most O(l=2a) elements. Finally, Alice tellsBob if her input is among them.For a � log l, Alice reduces the domain size by sending Bob the �rst a�2 log lbits of her input, after which they simulate the �rst protocol.Randomized Protocol: This is just a special case of the randomizedprotocol for disjointness (lemma 8). 2Note that all of the above protocols are constant round. We now use therichness lemma to show lower bounds.Theorem 7 If MEMn;l has a one-sided error [a; b]-protocol, then 2a(a + b) =
(l(logn�log l)): If its negation has a one-sided error [a; b]-protocol, then 2a(a+b) = 
(l).Proof: The (n; l)-membership function is (l; (nl ))-rich, so by the richness lemma,we can �nd a 1-submatrix of dimensions at least l=2a+2 � (nl )=2a+b+2. Note,however, that if the membership matrix contains a 1-rectangle of dimensionsr � s, then (n�rl�r ) � s so(n�l=2a+2l�l=2a+2 ) � (nl )=2a+b+2 ) 2a+b+2 � (n=l)l=2a+2 ) 2a+2(a+b+2) � l(logn�log l)The negation of MEMn;l is (n � l; (nl )) rich, so by the richness lemma, we can�nd a 1-submatrix of dimensions (n � l)=2a+2 � (nl )=2a+b+2. Note, however,that if the non-membership matrix contains a 1-submatrix of dimensions r� s,then (n�rl ) � s, so(n� n�l2a+2l ) � (nl )=2a+b+2 ) a+ b+ 2 � l log( nn� n�l2a+2 )) 2a(a+ b) = 
(l) 2If we are only interested in the value of a and b up to a constant, the determin-istic upper bounds and the lower bounds for one-side error protocols are tightfor l � n1�� and a � log l: It is su�cient and necessary that b = l logn=2�(a).The bounds for randomized one-sided error protocols for non-membership tightfor any l � n=2 and a: It is su�cient and necessary that b = l=2�(a).3.3 The Disjointness ProblemAn obvious generalization of the membership problem is the disjointness prob-lem DISJn;k;l; k < l < n=2, where Alice gets T � f0; . . . ; n� 1g of size k, Bobgets S � f0; . . . ; n� 1g of size l, and they decide if T \ S = ;. The symmetricversion of this problem is, of course, well studied.Several upper bounds can be derived for this problem using extensions ofthe protocols given for the membership problem. Perhaps the nicest is:7
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Lemma 8 DISJn;k;l, for k < l < n=2 has a one-sided error randomized[O(a); O(l=2a=k)]-protocol for all values of k � a � k log l, and a one-sidederror randomized [O(a); O(l log(k=a))] protoocl for all values of 1 � a � k.Proof: We use an adaptation of a protocol due to Hastad and Wigderson(unpublished). First let us consider the a = �(k) case. Here the public coinips will denote a sequence of random subsets R1:::Ri::: of f1:::ng. Each roundAlice will send to Bob the next i such that S � Ri, Bob will update his setT  T � Ri, and will send to Alice j � i for the next j such that T � Rj(the new T ), and then Alice will update S  S � Rj . If at any point duringthe protocol S or T become empty then the original sets were disjoint. Theexpected number of bits sent by Alice (resp. Bob) in each round is the currentsize of S (resp. T ). If S and T are disjoint then the expected size of both Sand T decreases by a factor of exactly 2 each round. Thus the total expectednumber of bits sent by Alice (resp. Bob) is still O(k) (resp. O(l)). If S and Tdo not become empty after so many bits have been sent then, w.h.p, S and Twere not disjoint.If a � k then Alice starts by sending Bob O(a=k) indices i as before. Thisallows Bob to reduce the size of T (assuming that it is disjoint from S) by anexpected factor of exactly 2a=k. Then they continue with the previous protocol.If a � k then Bob starts by sending Alice log(k=a) indices i as before, reducingthe size of S to O(a). 2Theorem 9 If the disjointness problem has a randomized one-sided error [a; b]-protocol, then either a = 
(k) or b = 
(l). Moreover, for a > k, b = 
(l=2a=k�a)Proof: The (n; l)-disjointness function is ((n�lk ); (nl ))-rich, so by Lemma 5, wecan �nd a 1-rectangle of dimensions at least (n�lk )=2a � (nl )=2a+b. Let the rowsbe indexed by the sets T1; T2; . . . ; Tr and let the columns be indexed by the setsS1; S2; . . . ; Ss. We then have that Si\Tj = ; for all i; j. Let t = (n�l�k)=2a=k.Since (tk) < (n�lk )=2a, we must have [Ti > t and therefore [Si < n � t, i.e.2a+b � ( nn�t)l. 2The disjointness problem is interesting from a cell probe perspective. Recallthat by perfect hashing [FKS84], one can store a set S � U using O(jSj) cells,each containing an element of U , so that membership queries can be answeredin constant time. Now suppose we have k elements, and we want to �nd outwhether any of them are in S. Is there a data structure for S and a way ofpreprocessing the query so that after preprocessing, we can do this in o(k) time?As a corollary to the above theorem, we can show that there is not.3.4 The Span ProblemThe membership and disjointness problems exhibits a smooth tradeo� betweenthe number of bits that Alice sends Bob and the number of bits that Bob sends8
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Alice. Using the richness technique, we can show that this is not the case forthe problem INSPANn, where Alice gets x 2 Z2n, Bob gets a vector subspaceY � Z2n, (the subspace may be represented by a basis of k � n vectors, thusrequiring O(n2) bits) and they must decide whether x 2 Y . We omit the proofof the following theorem.Theorem 10 In any [a; b] one-sided error randomized protocol for INSPANneither a = 
(n) or b = 
(n2).4 The Round Elimination Technique4.1 Round Elimination LemmaLet f(x; y) be a communication problem on domain X � Y . Let Pm(f) be thefollowing problem: Alice gets m strings x1; :::; xm 2 X ; Bob gets an integeri 2 f1::mg, a string y 2 Y and a copy of the strings x1; :::; xi�1. Their aim isto compute f(xi; y).Lemma 11 Suppose there is a randomized [t; a; b]A-protocol for solving P100a(f).Then there is a randomized [t� 1; 120a; 120b]B-protocol for solving f .The proof of this main lemma is quite involved and is postponed to the ap-pendix.4.2 Range query problemsWe consider the cell probe complexity of existential, r-dimensional orthogonalrange query problems on domain U = f1; . . . ; 2n � 1g, for �xed r � 1.The problem is as follows: Given a data set S � U r, construct a static datastructure using at most s = jSjO(1) memory cells, each containing b = nO(1)bits, so that for any box q = [u1; v1]� � � � [ur; vr], we can answer the query \Isq \ S = ;?" e�ciently.Previously, only counting range queries (where the query is \What is jq \Sj?"), andmodulo-counting range queries (where the query is \Is jq\Sj mod r =0?") have been considered in the cell probe model. An upper bound on thequery time in the one-dimensional problem, for all types of queries, is O(logn),with s = O(jSj); b= O(n) [Wil83]. It is easy to generalize this to a solution forthe r-dimensional problem with query time O(logn) and s = O(jSjr); b = O(n).The best known lower bound for counting [Xia92] and modulo-counting [Mil94,BF94] range queries is 
(logn= log logn) for any dimension r � 1. ([Xia92] and[Mil94, BF94] were done independently). The complexity of existential querieswas left as an open problem in [Mil94].Here, we show a O(1) upper bound on the query time for existential rangequeries in the one-dimensional case, and an 
(plogn) lower bound on d-dimensional queries for r > 1.For the upper bound, by Lemma 2, we only need to �nd a protocol for thecommunication problem OERQn;l, where Alice gets an interval [q1; q2], Bob getsa set S � U of size at most l and they have to decide if [q1; q2] \ S = ;.9
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Theorem 12 OERQn;l has an [O(1); O(log l); n2]-protocol.Proof: If jSj � n, Bob can send his entire input to Alice in one round, soassume S > n. Identify q1 and q2 with their binary representation, and leti 2 f1; . . . ; ng be the �rst bit where q1 and q2 di�er, and let w be their commonpre�x of length i� 1. Since q1 < q2, we have q1i = 0 and q2i = 1. We can write[q1; q2] = [q1; z � 1] [ [z; q2], where z = w10n�i�1. Our protocol determine if[q1; q2] \ S = ; by checking if [q1; z � 1] \ S = ; and if [z; q2]\ S = ;. We onlydescribe the second part, the �rst is similar.Alice sends i to Bob using dlog ne = O(log l) bits. They now determineif there an element in S starting with the pre�x w1. This is done by thedeterministic [O(log l); O(logn)]-membership protocol of Section 3. If thereisn't such an element [z; q2]\ S is empty. Otherwise, the membership protocolalso tells Bob exactly what w is, and he can send Alice the smallest of hiselement y with pre�x w1. Alice then checks if q2 is smaller than y, in whichcase [z; q2] \ S is empty, otherwise it isn't. This completes the protocol. 2We now turn to show lower bounds on r-dimensional queries for r > 1. Weassume without loss of generality that r = 2, and consider the communicationproblem ERQn;l where Alice gets (x; y) 2 U2, Bob gets S � U2 of size at mostl and they must determine if ([1; x]� [1; y])\ S = ;. Our lower bound is animmediate corollary of the following theorem:Theorem 13 Let any c > 1 be given. For a su�ciently large n, let l =2(logn)2 ; a = (logn)3; b = nc; t = plogn=10. Then ERQn;l does not have an[t; a; b]-protocol.Proof: For a communication problem f , let Pm(f) be de�ned as Pm(f) butwith the roles of Alice and Bob reversed. The round elimination lemma enablesus to reduce instances of ERQ to Pm(ERQ) or Pm(ERQ), eliminating one round.We also need to reduce instances of Pm(ERQ) or Pm(ERQ) to ERQ. Thefollowing two reductions take care of that:Suppose that m divides n. A communication protocol for ERQn;l can beused as a protocol for Pm(ERQn=m;l) as follows: Alice, given (x1; y1) . . . ; (xm; ym),computes the concatenations x0 = x1 � x2 � � � � xm and y0 = y1 � y2 � � � � ym. Bob,given i; S, and (x1; y1); . . . ; (xi�1; yi�1) computes S 0 = f(x1 �x2 � � � �xi�1 �u; y1 �y2 � � ��yi�1 �v)j(u; v)2 Sg: Since [1; x0]� [1; y0]\S 0 = ; i� [1; xi]� [1; yi]\S = ;,they get the correct result by simulating the ERQn;l protocol.Suppose m is a power of two. A communication protocol for ERQn;l can beused as a protocol for Pm(ERQn�logm;l=m) as follows: Alice, given (x; y) andi, computes x0 = [i � 1] � x and y0 = [n � i] � y, where [�] denotes the binarynotation of a number. Bob, given S1; S2; . . . ; Sm computes S 0i = f ( [i � 1] �u; [n � i] � v ) j (u; v) 2 Si g and S 0 = [mi=1Si. Since [1; x0] � [1; y0] \ S 0 = ;i� [1; x]� [1; y]\ Si = ;, they get the correct result by simulating the ERQn;lprotocol. 10
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We are now ready for the main part of our proof. Given a protocol forERQn;l, we use the �rst reduction above to get a [t; a; b]A-protocol forP100a(ERQ n100a ; l). We use the round elimination lemma to get a [t� 1; 120a; 120b]B-protocol forERQ n100a ; l:The second reduction above gives us a [t� 1; 120a; 120b]B-protocol forP 12000b(ERQ n100a�log(12000b); l=(12000b)):Using the round elimination lemma again, we get a [t�2; 1202a; 1202b]A-protocolfor ERQ n100a�log(12000b); l=(12000b):By doing this two round elimination repeatedly, and combining with the factthat there is clearly no [0; a0; b0]- protocol for ERQn
(1);l
(1) for any a0; b0, we aredone. 2We can also use our technique to derive 
(plogn) lower bounds for the one-dimensional counting and modulo-counting problems, and, in fact, for all theproblems considered in [Mil94]. The proofs are similar to the above and areomitted from this extended abstract.4.3 The \Greater Than" ProblemThe GTn function is de�ned as follows: Alice and Bob each gets an n-bit integer,x and y, resp., and they must decide whether x > y. It is easy to see thatthe deterministic communication complexity of GTn is linear, and it is knownthat the randomized complexity is O(logn) [Ni93]. The upper bound requiresO(logn) rounds of communication, and it is not hard to obtain a k-roundprotocol using O(n1=k log n) bits of communication. Yao, in an unpublishedresult, shows that this is close to optimal. We can easily rederive his lowerbound (in a somewhat weaker form) from the round elimination lemma.Theorem 14 There does not exist a randomized [k; n1=k=120k; n1=k=120k] pro-tocol for GTn.Proof: The proof is by induction on k. We will show that a[k; n1=k=120k; n1=k=120k] protocol for GTn implies a similar one for Pn1=k (GTn0),for n0 = n(k�1)=k. Using the round elimination lemma this implies a [k �1; n1=k=120k�1; n1=k=120k�1] protocol for GTn0 . A contradiction to the induc-tion hypothesis is obtained since n1=k = n01=(k�1).Here is the required reduction: To solve Pn1=k (GTn0) using a protocol forGTn, Alice constructs an n-bit integer x̂, by concatenating x1; :::; xm. Bobconstructs an n-bit integer ŷ by concatenating x1; :::; xi�1; y and another (n1=k�i)n0 one bits. One can easily verify that x̂ > ŷ i� xi > y. 211
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4.4 Depth Hierarchy for Monotone AC0Let Tnk be the boolean function on nk variables de�ned inductively as follows:Tn0(x) = x, for odd k, Tnk is the OR of n copies of Tnk�1, and for even k, Tnk isthe AND of n copies of Tnk�1. Each of the copies is a disjoint set of variables.Thus Tnk is de�ned by an AND=OR tree of fanin n and depth k.It is clear that Tnk can be computed by a monotone depth k formula of sizeN = nk , with the bottom gates being OR gates. In [KPPY84] it is proved thatmonotone depth k circuits with bottom gates being AND gates require expo-nential size to compute Tnk. This lower bound is equivalent to a lower boundin communication complexity using the equivalence due to [KW90], (see also[NW93]). Our lemma allows us to re-derive this lower bound (in a somewhatweaker form).Theorem 15 [KPPY84] Any monotone depth k formula with bottom gates be-ing AND gates requires size 
(n=120k) = 
(N1=k=120k) size to compute Tnk.Comment: An exponential lower bound for depth k circuits directly followsby the straight forward simulation of depth k circuits by depth k formulae.Proof: Let fnk be the communication problem associated with the monotoneformula complexity of Tnk ([KW90], see also [NW93]). (Here Alice is the ANDplayer { holding a maxterm of Tnk.) We will prove by induction on k that fnkdoes not have [k; n=120k; n=120k]A protocols (we assume k is even, the odd caseis simply dual). This clearly su�ces to prove the theorem.Inspection of fnk reveals that it is completely equivalent to Pn(fnk�1), onlythat Bob does not also get copies of the �rst i � 1 strings of Alice. Using theround elimination lemma we see that a [k; n=120k; n=120k]A protocol for fnkimplies a [k � 1; n=120k�1; n=120k�1]B protocol for fnk�1, which by inductiondoes not exist. 2References[Ajt88] M. Ajtai. A lower bound for �nding predecessors in Yao's cell probemodel. Combinatorica, 8:235{247, 1988.[BF94] P. Beame, F. Fich, personal communication.[DGS84] P. Duris, Z. Galil, G. Schnitger. Lower Bounds of CommunicationComplexity. In Proc. 16th ACM Symposium on Theory of Comput-ing (STOC) (1984) 81-91.[FKS84] M.L. Fredman, J. Koml�os, and E. Szemer�edi. Storing a sparse tablewith O(1) worst case access time. J. Ass. Comp. Mach., 31:538{544,1984.[HR88] B. Halstenberg, R. Reischuk: On Di�erent Modes of Communi-cation. In Proc. 20th ACM Symposium on Theory of Computing(STOC) (1988) 162-172. 12
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AppendixProof of the Richness LemmaProof: We �rst show the following, slightly stronger statement for deterministicprotocols:� Let f be a (u; v)-rich problem. If f has a deterministic [a; b]-protocol, thenf contains a submatrix of dimensions at least u=2a � v=2a+b containingonly 1-entries.The proof is by induction in a+ b. If a+ b = 0, no communication takes place,so f must constant, and, since it is (u; v)-rich, we must have jAj � u, jBj � vand f(x; y) = 1 for all x; y.For the induction step, assume �rst that Alice sends the �rst bit in theprotocol. Let A0 be the inputs for which she sends 0, and A1 be the inputs forwhich she sends 1. Let f0 be the restriction of f to A0 � B and let f1 be therestriction of f to A1 � B. By a simple averaging argument either f0 or f1 is(u=2; v=2)-rich. Assume WLOG that it is f0. Now, f0 has an [a�1; b]-protocol,so by the induction hypothesis, f0 contains a 1-matrix of dimensions at least(u=2)=2a�1� (v=2)=2a�1+b which is what we are looking for.Assume next that Bob sends the �rst bit, at let B0; B1; f0; f1 be de�nedanalogously. Either f0 or f1 is (u; v=2) rich so either f0 or f1 contains by theinduction hypothesis a 1-matrix of dimensions u=2a � (v=2)=2a+b�1 which iswhat we are looking for. This completes the induction.Now assume a randomized one-sided error protocol for f is given. By �x-ing the random coin tosses made by the protocol, we can convert it into adeterministic protocol computing a function f 0 with the following properties:� f(x; y) = 0) f 0(x; y) = 0� f 0 is (u=4; v=4)-rich.By applying the deterministic version of the lemma to f 0, we are done. 2Proof of the Round Elimination LemmaProof: Let m = 100a and let I = f1; . . . ; mg.Assume a randomzied protocol for Pm(f) with error probability 1=3. Byrepeating it 120 times in parallel, and taking majority of the results, we get theerror probability down to less than 1=4000.For any distribution D on X � Y we will construct a deterministic t � 1round algorithm for f that errs on at most 15% of the inputs weighted accordingto the distribution D. A randomized algorithm for f follows from Yao's versionof the von Neuman minmax theorem [Yao77].De�ne a distribution D� on Xm � I � Y as follows: For each 1 � j � mwe choose (independently) (xj ; yj) according to distribution D, and we choosei uniformly at random in I . We set y = yi (and throw away all other yj 's).14
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Let A be a deterministic algorithm for Pm(f) that errs on a fraction of atmost 1=4000 of the input weighted by distribution D� (such an algorithm existsby the easy direction of the minmax theorem).De�ne S to be the set of (hx1; . . . ; xmi ; i) for whichPrD�[A errs j hx1; . . . ; xmi ; i] � 1=20:Consider the set R of x = hx1; . . . ; xmi for which (x; i) 2 S for at least99=100 of the possible values of i. Using the Markov inequality we see thatPrDm(R) � 12 .Since Alice sends a bits in her �rst message, she partitions R into at most2a sets, let T be the subset of R that has maximum weight, its weight is atleast PrDm(T ) � PrDm(R)2a � 1=2a+1.We now claim� There exists i 2 I , a1; a2; . . . ; ai�1 2 X , and a set G � X with thefollowing properties,1. PrD(G) � 0:92. For any x 2 G, we can �nd xi+1; xi+2; . . . ; xm, so thatha1; . . . ; ai�1; x; xi+1; . . . ; xmi 2 Tand (ha1; . . . ; ai�1; x; xi+1; . . . ; xmi ; i) 2 S:Before we prove this claim, we show that it implies our lemma. Here is a t� 1round algorithm for f on inputs x and y:� Alice, given x, constructs an input for A as follows: If x 2 G then shepicks a sequence x that starts with with a1; . . . ; ai�1; x such that x 2 Tand (x; i) 2 S. Such a sequence exists by the de�nition. If x =2 G thenshe picks an arbitrary sequence.� Bob, given y, constructs his input for A as follows: i is already de�ned,xj = aj for all j < i, y is given to him.� The two players run the algorithm A but skipping the �rst round of com-munication, instead assuming that the �rst message Alice sent was theone yielding T .The probability that the algorithm errs when (x; y) are chosen according to Dis given by PrD[ error ] � PrD[x =2 G] + PrD[ error jx 2 G]. The �rst term isbounded from above by 110 , and to bound the second term we observe that forx 2 G, the sequence (x; i) is in S, so the probability of error for a random y,given x is at most 120 . Thus the total probability of error is at most 0:15.We now prove the claim, by showing that the procedure in Figure 1 isguaranteed to �nd i and ha1; a2; . . . ; ai�1i with the correct properties. Assumethat it fails. Note that by the de�nition of R (of which T is a subset), the �rst15
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i := 1T1 := Tdo T 1i := fx 2 Tij(x; i) 2 SgT 0i := fx 2 Tij(x; i) 62 Sgif Pr(T 0i jTi) � 0:05 thenFix ai so that Pr(xi = aijx 2 T 0i ) is maximized.Ti+1 := fx 2 T 0i jxi = aigelseif PrD(xj9xi+1; . . . ; xn : (a1; . . . ; ai�1; x; xi+1; . . . ; xn) 2 T 1i ) � 0:9then halt, f(a1; . . . ; ai�1)g is the sought after vectorelse Fix ai so that Pr(xi = aijx 2 T 1i ) is maximized.Ti+1 := fx 2 T 1i jxi = aigfPrDm�i(Ti+1) � PrDm�i+1(Ti) � 0:95=0:9gendifi := i+ 1od Figure 1: Procedure for constructing ha1; a2; . . . ; ai � 1iclause in the if-statement can be satis�ed at most m=100 times, which meansthat PrD (Tm) � PrDm(T ) � (0:05)m=100 � (0:95=0:9)99m=100� 2�(a+1)(0:051=100 � (0:95=0:9)99=100)100a � 2�(a+1)10a > 1;a contradiction. 2
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GSOS Languages — Part I: Compact GSOS Languages.
December 1994. 70 pp. An extended abstract of the paper
will appear in: Proceedings of CAAP ’95, LNCS, 1995.
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